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A simple two-phase model for steady, fully developed flows of particles and water over
erodible, inclined beds is developed for situations in which the water and particles have
the same depth. The rheology of the particles is based on recent numerical simulations
and physical experiments, the rheology of the fluid is based on an eddy viscosity, and the
interaction between the particles and the fluid is through drag and buoyancy. Numerical
solutions of the resulting differential equations and boundary conditions provide velocity
profiles of the fluid and particles, the concentration profile of the particles, and the depth
of the flow at a given angle of inclination of the bed. Simple approximations permit
analytical expressions for the flow velocities and the depth of flow to be obtained that
agree with the numerical solutions and those measured in experiments.

1. Introduction

Debris flows are mixtures of water and cohesive or cohesionless particles driven down
slopes by gravity. They invariably consist of unsteady, non-uniform surges of heteroge-
neous mixtures, exhibit strong grain-size segregation, and involve non-hydrostatic distri-
butions of fluid pressure (Iverson 1997).

Because of the high solid concentrations that characterize debris flows, direct interactions
between particles are common. Consequently, the resistance to motion associated with
frictional collisions between the grains must be taken into account in descriptions of such
flows.

Models of debris flows as a single-phase fluid exist. They typically employ a non-Newtonian
rheology to incorporate the effect of the grain interactions (see Takahashi 1991; Coussot
1994; Chen & Ling 1998; Brufau et al. 2000). The rheologies adopted range from rigid-
viscous (yield, followed by a linearly viscous shear stress) (Bingham 1922) to collisional
(shear and normal stresses quadratic in the shear rate) (Bagnold 1954). More elaborate
models (Tverson 1997; Jenkins & Hanes 1998) distinguish between the two phases and
assume that they interact through drag and buoyancy.

In recent years, much research has been devoted to the investigation of inter-particle
interactions for the case of dry granular flows, both from theoretical and experimental
points of view. In particular, recent extensions of kinetic theories (Mills, Tixier & Loggia
1999, 2000; Aranson & Tsimring 2002; Louge 2003; Kumaran 2006; Jenkins 2006, 2007)
and numerical and experimental simulations of motions of disks and spheres (Pouliquen
1999; GDR MiDi 2004; da Cruz 2005) furnish some hints about the possibility of using
a simple constitutive model for dense flows of dry grains, at least for the case of steady,
fully-developed flows.
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In experiments, Armanini el al. (2005) investigated the steady fully-developed flow of
water and plastic cylinders in a rectangular inclined flume. This is an extremely ideal-
ized debris flow. However, because of its simplicity, Armanini and co-workers were able
to measure the distributions of velocity, concentration and granular temperature of the
grains across the flow and to make comparisons with the predictions of kinetic theories.
In their experiments, the mixture of water and grains flowed either over a rigid bottom or
over an erodible bed. For the flows over an erodible bed, the authors distinguished three
cases, depending on whether the height of the flowing grains was equal to the height of
the flowing water (saturated debris flow), the height of the flowing grains was less than
the height of the flowing water (oversaturated debris flow) or the height of the flowing
grains was greater than the height of the flowing water (undersaturated debris flow).
Our goal is to provide a model of steady, fully-developed debris flows over erodible beds
that incorporates the essential physics of the process, reproduces the experimental ob-
servations of Armanini et al. (2005), and is simple enough to give approximate analytical
solutions for engineering applications. Because in saturated flows the fluid and particle
phases have a common free surface, the boundary conditions there are simpler than for
under- and over-saturated flows. Consequently, we focus here on saturated debris flow,
and defer the analysis of the more complicated situations.

The mixture of water and cohesionless granular material is treated as a two-phase flow.
A very simple but realistic rheology suggested by experiments on dry granular flow is
adopted for modelling the resistance in the particle phase. The rheology results from
momentum transfered in collisions that involve more than two particles. As the concen-
tration increases, the number of particles involved in simultaneous collisions increases
and ephemeral chains of particles begin to dominate the momentum transfer. In the con-
stitutive relation that describes this, there are two parameters: a yield, associated with
the minimum angle for which a steady flow is possible; and the coeflicient of the rate
dependent part, determined by fitting with experiments. However, once determined for
a given granular material, the latter remains fixed and does not depend on the charac-
teristics of the flow. Because the experiments indicate that the interstitial fluid does not
influence the interaction between the particles, we do not include such a contribution. It
has been incorporated in the context of a single-phase model for submarine debris flows
by Cassar, Nicolas & Pouliquen (2005). However, in such flows, the particle interactions
are far less violent than in debris flows.

The presence of the sidewalls in the rectangular laboratory flume used by Armanini ef al.
(2005) is taken into account in the way suggested by Taberlet el al. (2003), through a
Coulomb friction term. Indeed, it has been demonstrated that the sidewall resistance is
responsible for the development of an erodible bed in the case of steep, dense, dry granu-
lar flows (Taberlet et al. 2003; Jop, Forterre & Pouliquen 2005). Here, it is assumed that
this is also the case for dense granular—liquid mixtures. In the same spirit, a very simple
turbulence model based on the mixing length hypothesis is adopted for the momentum
transfer in the liquid phase. Finally, as in other two-phase models, it is assumed that the
interaction between the liquid and the solid is due only to buoyancy and drag.

In order to obtain an approximate analytical description of the flow, two further assump-
tions are made that seem reasonable and consistent with the experimental observations:
the solid concentration and the difference in the velocities of the phases across the flow
are each taken to be constant. These assumptions permit the derivation of analytical ex-
pressions for the velocity profiles of the liquid and particle phases, the depth of the flow
and the inclination of the free surface as functions of the particle and liquid discharge.
They are also the first step in an iterative procedure leading to improved concentration
and velocity profiles.
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In § 2, the experiments are described. In § 3, the equations governing the motion of the
debris flow are presented and the constitutive models and the simplifying assumptions
adopted in this work are introduced. In § 4, comparisons with the experiments performed
by Armanini et al. (2005) and Larcher et al. (2007) are made and discussed. Finally,
in §5, some conclusions and suggestions for future improvements of the present theory
are drawn.

2. Experiments

The experiments reported on by Armanini et al. (2005) and Larcher et al. (2007) were
carried out in the recirculating lume shown in figure 1 (from Armanini et al. 2005). Tt
consisted of a glass-walled open channel fed by an external conveyor belt. In it, they were
able to maintain a steady, fully-developed flow in a section of the channel. Armanini et al.
(2005) controlled the total amount of water and particles in the flume and its angle of
inclination. Given the angle of inclination, a steady, fully-developed flow was achieved in
a section of the channel after a certain fraction of the particles was deposited in the bed.
In this section of the channel, the inclination of the bed was, in general, different from
the inclination of the flume. The inclination of the bed then determined the volume flow
rates of water and particles above it. In steady, fully-developed conditions, the angle of
inclination of the free surface is equal to that of the bed.

The steady, fully-developed debris flow was filmed through the glass wall of the open
channel using a high-speed video camera. An example of a single frame is shown in
figure 2 (from Armanini et al. 2005). Tt is possible to see the variation of the velocity and
solid concentration moving from the free surface towards the bed. Using image processing
techniques, Armanini et al. (2005) were able to obtain a detailed description of the
flow in terms of the distributions of grain velocity, concentration, granular temperature
and stresses. These are crucial pieces of information for evaluating the capability of a
mathematical model to capture the key features of a debris flow.

The goals of the present work are to predict the depth of the flow and the profiles of grain
velocity, water velocity, and concentration, given the angle of inclination of the bed, to
calculate the total flux of grains and water from these, and to compare the profiles and
the fluxes with those measured in the experiments.

3. Theory

A sketch of the geometry of a saturated debris flow over an erodible bed is shown in
figure 3. We take z = 0 to be the free surface and z = h the erodible bed, and let p
denote the fluid mass density, ¢ the grain concentration, g the gravitational acceleration,
0 the free surface inclination, ¢ the grain specific mass, d the grain diameter, i the fluid
viscosity, U the fluid velocity, and « the grain velocity.

3.1. Fluid Momentum Balance
The balance of fluid momentum transverse to the flow is
P! = pgcos0, (3.1)

where P is the fluid pressure. Here and in the following a prime indicates a derivative
with respect to z.
The balance of fluid momentum in the direction of flow is

S '=(1—c)pgsind — A, (3.2)
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FIGURE 1. The re-circulating flume used by Armanini et al. (2005) (published by permission of
Cambridge University Press).

FIGURE 2. A frame of a steady, fully-developed flow (from Armanini et al. 2005, published by
permission of Cambridge University Press).

- - horizontal

FIGURE 3. Sketch of a saturated debris flow over an erodible bed.
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where
S=—(1-¢)[pr’(h—2)* U U (3.3)
is the fluid shear stress and
c 1 3 n
A=p—-——— | —|U— 18.3— | (U — 3.4
i (10 e sal ) w - (3.4

is the drag. In the constitutive relation (3.3) for the fluid shear stress, the approximation is
made that the mixing length in the turbulent viscosity is proportional to the distance from
the bed through Karman’s constant, x = 0.41. The presence of the particles is expected
to influence the turbulence, but in the absence of any data, we have no information to
guide a modification of this parameter. In order to avoid the logarithmic singularity in
the velocity profile, we replace the turbulent viscosity with the molecular viscosity very
close to the bed, where the latter exceeds the former. The expression (3.4) for the drag
is, perhaps, the simplest form of a drag force (Dallavalle 1943) that incorporates viscous
drag, form drag, and concentration dependence (Richardson & Zaki 1954).

3.2. Particle Momentum Balance

The balance of particle momentum transverse to the flow is

p' = pc(o —1)gcos, (3.5)
where p is the particle pressure. Here, buoyancy has been incorporated in the dimen-
sionless body force. If W is the chute width and p,, the wall friction, the corresponding
component parallel to the flow is

s’ = pocgsinf + A — 2“#}), (3.6)

where s is the grain shear stress. Here, it is assumed that the sidewalls exert a frictional
force on the particles, as in the case of dry granular flow (Taberlet et al. 2003; Jop
et al. 2005). The use of this term in the particle momentum balance implies an influence
of the channel width on the particle transport capacity. However, in interpreting their
experimental results, Armanini el al. (2005) did not regard the influence of the sidewalls
as being significant. The importance of the sidewall friction will be evaluated in the
context of an approximate analytic solution for the velocity profiles.

In the version of the GDR MiDi (2004) rheology that we employ, the grain shear stress
is given in terms of p and an effective coefficient of friction u:

s = up. (3.7)

Dimensional analysis shows that for one-dimensional shearing flows that are homogeneous
and steady, it and ¢ are only functions of the inertial parameter
!
I= M (3.8)
(p/pea)'’?

The inertial parameter is the ratio of time scales associated with grain motion perpendic-
ular and parallel to the flow, respectively. Cassar et al. (2005) suggest that the definition
(3.8) of the inertial parameter is valid only in the free fall regime identified by Cour-
rech du Pont et al. (2003), in which the particle inertia dominates the fluid drag. This
is the case in the experiments on saturated debris flow performed by Armanini et al.
(2005).
The flow behaviour results from momentum transferred in collisions that involve more
than two particles. As the concentration increases, the number of particles involved in
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FIGURE 4. (a) The linear relation between effective friction u and inertial parameter I for circular
disks (from da Cruz et al. 2005). (b) The corresponding linear relation between concentration

and [I.

simultaneous collisions increases and ephemeral chains of particles begin to dominate
the momentum transfer. This is responsible for a smooth transition from a regime that
involves multiple, simultaneous collisions to a regime that involve static chains of con-
tacting particles in the bed.

The algebraic relation between the stress ratio and the inertial parameter can be placed
in the context of the kinetic theory and a slight extension of it appropriate to dense flows.
When the divergence of the flux of fluctuation energy of the kinetic theory vanishes, an
algebraic determination of the granular temperature in terms of the shear rate is possible.
Numerical simulations of dense, dry flows (Silbert et al. 2001; Mitarai & Nakanishi 2005)
indicate that this is the case in dense flows over an inclined, rigid bed in the absence of
sidewalls. Then, as indicated by Jenkins (2006) a correspondence can be made between
the rheology that involves the inertial parameter and that of the kinetic theory, at least
in the region of the flow in which collisions dominate the particle interactions.
Numerical experiments on simple shear flows of disks (figures 4a,b from da Cruz et al.
2005) suggest that at high solid concentrations simple linear expressions are valid for p:

and ¢
¢ = Cpmaz — b1, (3.10)

where fmin, X, Cmar and b are numerical coefficients. The coeflicient ft,,;y is the smallest
value of u for a steady, fully-developed flow and ¢4 18 the corresponding value of the
particle concentration.

Figure 4a suggests that the effective friction saturates at large values of the inertial
parameter (GDR MiDi 2004; Jop et al. 2005). This saturation has been related to the
existence of a maximum angle for steady, fully-developed, dry granular flows over an
inclined plane (Pouliquen 1999). Saturation can be incorporated in the simple rheology
by assuming that (3.9) is valid up to a maximum value pi,q. of the effective friction and
constant thereafter.
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3.3. Boundary Conditions

In order to solve the flow problem, we need to specify boundary conditions. At the
common free surface of the particles and water, we assume that the stresses vanish

P(0)=0, S(0)=0, p(0) =0 and s (0) = 0. (3.11)

When dealing with granular flows over an erodible bed, it is necessary to determine the
location of the bed. This requires that the physical characteristics of the bed be specified.
Experiments on inclined dry particle flows carried out over extremely long times indicate
that the bed creeps (Komatsu et al. 2001). However, over the much shorter time scales
of the experiments performed by Armanini et al. (2005), it is reasonable to assume that
the grains in the bed remain fixed, so that

u(h) = 0. (3.12)

This implies that in the bed the effective friction has a value less than or equal to ftymn
and the concentration is greater than or equal to ¢4, Where the equalities apply at the
interface with the flowing layer:

S(h)/p(h) = Hmin and C(h) = Cmaxzx- (313)

A final assumption is that the fluid shear stress vanishes in the bed, so that the gravi-
tational force is balanced only by the drag force. The study of dense collisional flows of
massive sediment by Jenkins and Hanes (1998) indicates that the shear stress in the fluid
phase is essentially zero at the bed and the total shear stress there is dominated by mo-
mentum transferred in particle interactions. Then, as in groundwater flows (de Marsily

1981),

(1 — Cmaz) SN0 — CiaaC |=n U(R) =0, (3.14)
where
Clone — 13 um) 41837 (3.15)
z=h— (1 _ cmam)S'l 10 . pd . .

3.4. Numerical Solution

In order to obtain numerical solutions, the momentum balances and constitutive relations
are phrased in terms of dimensionless variables, with lengths made dimensionless by d,
velocities by (gd) 12 and stresses by pogd. For simplicity, in the following, the notation
already introduced for the dimensional variables will be employed for their dimensionless
counterparts. The resulting system of six first order ordinary differential equations for
P, S, U, p, s and w on the interval 0 < z < h are, then,

1
P’ = = cosb; (3.16)
o
, 1 . c
S'=(1—-¢)=sinf — —C(U — u), (3.17)
o o
where
1 3 18.3
C=———|—=|U- — 3.18
el CILEIES ) 319

with R = pd(gd)'/? /n;

= Mm ’ (3.19)
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where this is regularized by the molecular viscosity at the bed;

1
p = <1 - —) ccos 0, (3.20)
o

1 w
s =csin0+ —cC(U —u) — 2M—p; (3.21)
o w
1/2 _
I p Cmax &
_ (P : 3.92
“ <c) b ’ ( )
where
b (s
C=Cmaz — — | — — Mmin | - (3.23)
X \P

At the free surface, the indeterminate form s/p = 0/0 is evaluated using L’Hospital’s
rule:
! 1 CU -
9 tanoy Sy
o—1 o—1 cos@

(3.24)

Pl.=0 z:O.
The seven boundary conditions associated with the system of first order equations are:

P(0)=0, p(0) =0, S(0) =0, s(0) =0, u(h) =0, s(h) — pminp(h) =0, (3.25)
and
(1 — Cmaz) SN0 — CaaC |=n U(R) = 0. (3.26)

The additional boundary condition permits the determination of the depth A as part of
the solution.

In a numerical solution, the angle of inclination is specified and the MATLAB® program
bvpdc is employed to predict P(z), S(z), U(z), p(2), s(z), u(z), and h. From these, the
concentration ¢(z) can be evaluated. Then, the volume fluxes of grains ¢ and of fluid @
may be calculated using

h h
q= W/o c(z)u(z)dz and Q = W/o [1—c(2)]u(z)dz. (3.27)

In the next sub-section, the results of such a numerical solution are compared with those
of a simple analytical approximation.

3.5. Approxzimate Analytical Solution

To obtain approximate analytical solutions, three approximations are made:
i) in the turbulent viscosity, the mixing length is assumed to be constant and the turbulent
viscosity is taken to be its average through the flow,

1
S = —(1-c)k?n*U”, (3.28)
o
where k = 0.20; ii) the concentration is initially assumed to be constant
c=¢;and (3.29)

iii) because the densities of the particles and fluid are not so different, the particle and
fluid velocity profiles are assumed to have a similar shape; hence,

W =U' (3.30)

That is, the difference between the particle and fluid velocities is assumed to be constant.
The drag force (3.4) can be used in the particle flow momentum balance (3.6) and the
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resulting equation integrated to obtain the distribution of the particle shear stress. In
dimensionless terms this yields

. ‘ Iy } o [
s=sin® [ edz+ —sinf [ (1 —¢c)dz2—S—2— | pdz. (3.31)
0 g 0 W Jo

Similarly, the distribution of the particle pressure can be obtained through integration
of (3.5). The dimensionless result is

1 z
p = cosf <1 - —) / cdz. (3.32)
9/ Jo

With the approximation (3.28) for the fluid shear stress, the ratio of particle shear stress
and pressure is, from (3.31) and (3.32),

z ( r¢
and (1—C)k‘2h2U/2 _2/'L_wf0 <f0 CdZ) dC
C-Dfe: ™" o W e

“(1—e)d
S % gy D099 . (3.33)
p o-—1

With the approximations of constant concentration (3.29) and constant difference in the
particle and fluid velocities (3.30), (3.33) may be rewritten as
1 —c 11-e¢
d tano — k22— = =

= tan @ iy LT 3.34
H o—1 an Jra— é o ¢ WM ’ ( )

where

! !

Iﬁ_(p/é)l/g (1 —1/0)zcosf’ (3.35)
Equation (3.34) provides an explicit characterization, in the context of the approxima-
tions, of how particle gravity, fluid gravity, turbulent shear stress and sidewall friction
influence the stress ratio of the particle phase. In the limit ¢ — 0o, (3.34) contains as a
special case the dry granular flow over an inclined bed between vertical sidewalls studied
by Jop et al. (2005) and, in the limit ¢ — 0o and W — oo, the dry granular flow over
an inclined rigid bed in the experiments of Pouliquen (1999).
In figure 5, the contribution of each of these terms to the total is indicated for the param-
eters of the model introduced in the next Section, for 8 = 8.5°. The buoyancy reduces
the particle pressure with respect to the dry case and, therefore, the particle gravity is
enough to maintain the motion of the grains at values of the angle of inclination much
lower than the angle of repose of the dry material. Indeed, figure 5 shows that the particle
gravity is greater than pi,:,, the value of y at the bed. The sum of fluid gravity and tur-
bulent shear stress is the drag acting on the particles. The absolute value of the turbulent
shear stress is maximum at the free surface, where it is of the same order of magnitude
as the fluid gravity. Consequently, the drag there is small and could also change sign,
while it has a positive maximum at the bed. This explains why, in the numerical solution
introduced later in this sub-Section, the fluid in the lower part of the flow is faster than
the particles, corresponding to a a positive drag; while that in the region close to the free
surface is slower, corresponding to a negative drag.
In the context of the model, the term associated with the sidewall friction provides the
only mechanism, responsible for the development of an erodible bed in a steady, fully-
developed flow. Indeed, it permits the stress ratio pu to decrease with distance from the
free surface and to reach its minimum value g, at the bed. Given that the bed is
characterized by particles with zero velocity and, at 2z = h, U’ = v’ = 0, I = 0 and
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1= [min, the depth of the flowing layer can be determined from (3.34):
1—c1 tan 6 min
hKH c-) g N7 Hwin gy (3.36)
0 —1 p Moy

c o
In addition, (3.34) provides the maximum and minimum angles of inclination for steady,
fully-developed flow. Because, at z = 0, pt must be greater than pinn,

Hmin .
tan @ > T /o= (3.37)

and, because it also must be less than piyq. there,

1\ pmax + (k/X)th(l/U)(Nmam - Nmin)g(l - E)/E
tanf < <1_E> T4 (/o)1 —2)/e '

Knowledge of pimin and pipme, determines the range of angles for which steady, fully-
developed flows are possible. Alternatively, the range of angles for which such flows are
possible for a given angle of inclination can be used to determine fiy,in and ppmgz.
In (3.37) and (3.38), the rheology pt = ptmin +xI was employed to infer that for g = pmn,
I =0 and for pt = ptmaz, I = (fmaz — fmin)/X. This rheology is then used in (3.34) to
obtain the quadratic equation,
k’h?1—¢ 1 1—¢

— P I — | —— [0+ —S ) tan 0 — pomin — —ptw | = 0. (3.39)
c o—1 c w
This quadratic may be solved for I and integrated to obtain the particle velocity profile:

(3.38)

g

u _ _X(C050)1/2 <h3/2 _ 23/2)

(1—=1/0)1/2 3D
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_(BDcoso)' /2 {(z —F) (2Fz — )" 4 F2sin <Z - F)}

2D

BD cos0)1/2 h—F
+% {(h— F) (2Fh —h*)""* 4 F?sin ™! <T>} ,
(3.40)
where
tan 6 1—¢ w 11—¢c 2 1 4AD
A=l fo e B g2l i g o XA
o—1 c W o C 8BD
(3.41)

The constant difference between the fluid and particle velocities can be determined by
solving the quadratic equation
18.3 (1 = Cmaz)™"
U—-u)?4+ ——(U —u) — — 1=
W=t 5370 =Y~ e,
that results from the boundary condition (3.14).
The analytical expression for the depth-averaged particle velocity can then be obtained
by integrating (3.40):
U,

(1—1/0)"?

sinf =0 (3.42)

_ xlcose)'/? 13/2
= 5D

h—F
| (BDeos0)!/? {(h — F) (2Fh — h?)"? 4 F?sin ! <—F )}

h—F . (h=F
F Sin —F

}. (3.43)

q = Cuy hW. (3.44)

+ F3

(BD cos 6)'/? (2Fh — h2)3/2
~ 7 2»D - 3

i (h=EY
F 2

The volume flux of particles associated with this is simply

In the following, the analytical and the numerical solutions are compared for the pa-
rameters of the model that are introduced in the next Section; in particular, y = 0.5,
tw = 0.27 and pimn = 0.41. For simplicity, the concentration is taken to be ¢ = ¢pgq.
The assumption of a constant concentration ¢ in the flow is the first step in an iterative
process. Indeed, once the distribution of the inertial parameter is obtained by solving
(3.39), it is possible to evaluate the analytical distribution of the concentration using the
linear rheology of (3.10). For this and for the numerical solution, the parameter b of the
rheology is required. The numerical simulations of da Cruz et al. (2005) on disks and
Mitarai & Nakanishi (2007) on spheres show that the ratio b/x is in the range 0.4 to 0.8.
Here, in order to evaluate the sensitivity of the solutions to this parameter, we take b
equal to 0.05 and 0.50, corresponding to ratios b/ equal, respectively, to 0.1 and 1.

In figure 6, the fluid and particle velocity distributions obtained from the numerical so-
lution of (3.16)-(3.23) are compared with the profiles of the analytical solution. First,
the difference between fluid and grain velocities is small both for the analytical and the
numerical solution. Figure 5 shows that this is due to a large drag coeflicient and not to
a negligible drag force, which is of the same order of magnitude as the other terms in
(3.34). The figure also indicates that the solution is not very sensitive to the parameter
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b, because its variation by one order of magnitude causes only a slight change in the ve-
locity distribution close to the free surface. Figure 7 shows the comparison between the
numerical and the iterated analytical concentration profiles. Apart from the fact that the
numerical concentration profiles are S-shaped, while the analytical ones are parabolic,
the values of the concentration through the flow are everywhere very close to ¢4, when
b = 0.05, and slightly less than ¢,,4,, when b = 0.50.

At first sight, figure 7 seems in contrast with the experimental concentration profiles
reported by Armanini et al. (2005), which range between 0.30 and 0.69. However, the
concentration measurements of Armanini et al. (2005) involve great uncertainty when
the concentration is high; this is everywhere in the flow except in a thin layer close to the
free surface. However, a concentration profile obtained by Spinewine et al. (2003) using a
more sophisticated stereo imaging system indicates that the concentration may be below
0.50 in as much as the upper third of a saturated flow. At concentrations below 0.50,
the divergence of the flux of fluctuation energy is not negligible, the algebraic relation
between the stress ratio and the inertial parameter begins to break down, and the simple
theory fails to reproduce the distribution of particle concentration.

The difference between analytical and numerical concentration profiles is essentially due
to the assumption that U’ = /. Indeed, as already mentioned, the numerical solutions
show that there is a part of the flow near the top where the grains are faster than the
fluid. Consequently, in this part, U’ is greater than «’, so that the term related to the
fluid shear stress in (3.34) is actually greater and the value of y is less in the numerical
solution than in the analytical approximation. The opposite applies to the lower part of
the flow. The comparison between analytical and numerical distributions of p is shown
in figure 8.



14 D. Berzi and J.T. Jenkins

32 T T T T T T

30

Flow depth [ d ]
[ b
N o0

o
N

22

20 1 1 1 1
8 8.1 8.2 8.3 8.4 8.5 8.6 8.7
Inclination [ ° ]

FIGURE 9. Predicted flow depth versus angle of inclination (solid line) and the measured
values for the saturated flow (open circles) obtained from Larcher et al. (2007).

These defects of the approximate analytical solution and the unavoidable presence of the
parameters in the rheology that must be obtained through comparisons with experiments
seem small compared to the advantages of dealing with relatively simple and explicit ex-
pressions that provide a full description of the flow. We next test the capability of the
approximate analytical solution to reproduce the experimental data.

4, Comparison

Here, the predictions of the analytical approximation of the present theory are com-
pared with the measurements of Armanini et al. (2005) and Larcher et al. (2007). To do
this, the parameters measured or suggested by them are adopted. These are o = 1.54,
d =0.0037 m, ¢par = 0.69 and W = 54d. The values of x and iy, for the rheology and
of 1, for the sidewall friction must be set through fitting with the experiments. Equa-
tion (3.36) indicates a linear relation between the flow depth A and the tangent of the bed
inclination, tan @, where the angular coefficient is proportional to 1/, and the intercept
is proportional to fimm /1tw. Hence, it could be possible to use the experimental values
of h against tan @ reported by Armanini et al. (2005) to evaluate fiiyn and p,,. However,
Armanini et al. (2005) evaluated the flow depth and the mean velocity through depth-
averaged momentum and kinetic energy. In conjunction with their definition of the bed,
this leads to a value of the grain velocity there that is still one-quarter of its maximum
(see their figure 16). To be consistent with our definition of the bed as the place where
the grain velocity and the inertial parameter are zero, we have reconsidered the data of
Larcher et al. (2007) for their saturated flows, and the flow depth has been evaluated as
the distance from the free surface where the granular temperature vanishes. Figure 9
shows the experimental values of h versus 6 and the theoretical curve of (3.36) with
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F1GURE 10. Predicted (lines) mean grain velocity versus angle of inclination and the measured
(open circles) values for the saturated flow obtained from Larcher et al. (2007): (- - -) x = 0.1;

(—) x=05; (---) x=1.0.

tmin = 0.41 and pty, = 0.27. The values of these parameters are close to others reported
in literature (Taberlet et al. 2003; GDR MiDi 2004; da Cruz et al. 2005; Jop et al. 2005).
The value of x in the grain rheology has been set through fitting the experimental values
of the mean grain velocity obtained from the integration of the velocity profile reported
in Larcher et al. (2007) over our flow depths. Figure 10 shows that the best fit is obtained
for x = 0.5. The sensitivity of the analytical solution to this parameter is also shown.
Decreasing x by one order of magnitude increases the mean velocity by a factor of two.

Figures 11 and 12 show that the parameters determined using global quantities such as
depth and mean velocity result in excellent predictions of the distributions of the particle
velocities and stresses reported by Larcher et al. (2007). Although the small number of
experiments does not allow us to truly test the capability of the present theory, the fact
that the parameters employed are in good agreement with their corresponding values for
dense, dry granular flows provides additional reinforcement for their use.

5. Conclusions

A relatively simple theory based on a realistic rheology for the particle interactions
has been applied to steady, fully-developed flows of saturated granular-liquid mixtures
over erodible beds. The main aspects of the theory are: (i) the particle rheology is char-
acterized by a linear dependence of the stress ratio on the inertial parameter and by the
presence of a yield, as in the case of dense and dry granular flow; (ii) the sidewalls exert
on the particles a frictional force, which has been demonstrated to play a fundamental
role for dry granular flows over an inclined bed; (iii) the resistance in the interstitial fluid
is modelled using a simple turbulent mixing length; (iv) the particle and liquid phases
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FIGURE 11. Predicted velocity profiles (lines) shown with the measured velocity profiles (sym-
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F1GURE 12. Predicted (lines) and measured values (symbols, Larcher et al. 2007) of the grav-
itational contribution to the mixture shear stress (dotted line and open triangles) and of the
particle effective normal stress (solid line and open circles) for 8 = 8.5°.
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interact only through buoyancy and drag. The introduction of three further approxima-
tions concerning the constancy of concentration, mixing length and difference between
fluid and particle velocities in the flow permits analytical expressions to be obtained for
the depth, distributions of fluid and particle velocity, and volume fluxes over a range
of free surface inclinations. Such results can be very useful in engineering applications.
Three parameters in the model have to be specified through fitting with experiments,
but it should be emphasized that at least two of them, the stress ratio for the yield of the
bed and the sidewall friction coeflicient, have a clear physical meaning, and reasonable
values for all of them appear in previous works.

The analytical solutions were tested against the experimental measurements of saturated
debris flows made by Armanini et al. (2005) and by Larcher et al. (2007) in a recircu-
lating flume. The comparisons show that the theory has the capability of reproducing
the experimental results. The theory will be extend to include the cases of oversaturated
and undersaturated debris flows; that is, when a difference between the depths of the
flowing particles and the flowing liquid is present. Steady, fully-developed descriptions
of the rheology, similar to those developed here, are often employed in depth averaged
descriptions of unsteady, developing flows (e.g. Savage & Hutter 1989; Iverson 1997).

The authors are grateful to Prof. Enrico Larcan for making possible their collaboration
and for his support of this study.
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